393. The Stereochemistry of Molecules containing the $\mathrm{N}=\mathrm{C}=\mathbf{N}$ Group: the Structure of the Monomethiodide of Bis-p-dimethylaminophenyl-carbodi-imide.

By J. J. Daly and P. J. Wheatley.

Cell dimensions and space-groups of three carbodi-imides have been determined and the structure of one of them, the monomethiodide of bis- $p$-di-methylaminophenylcarbodi-imide ( V ) established. This substance is orthorhombic $P c a 2_{1}$ with $a=40.50 \AA, \quad b=5.67 \AA, c=8.24 \AA$. A twodimensional analysis based on $h k 0$ intensities shows that the shape of the molecule conforms to that predicted by classical stereochemistry. The central $C-N=C=N-C$ chain is bent, in contrast to the linear $C=C=N-C$ chain found in some vinylideneamines. The line containing the $N=C=N$ system does not lie in the plane of either of the benzene rings. This lack of coplanarity is similar to that found in cis-azobenzene, and suggests that there is little resonance across the $=\mathrm{N}$ - system.
A carbodi-mmide ${ }^{1}$ of the type $\mathrm{R} \cdot \mathrm{N}=\mathrm{C}=\mathrm{N} \cdot \mathrm{R}$ should exist in enantiomorphous forms if the bonds at the nitrogen atoms are not collinear. ${ }^{2}$ Attempts have been made to resolve these compounds without success. ${ }^{3}$ It has recently been shown ${ }^{4,5}$ that the $\mathrm{C}=\mathrm{C}=\mathrm{N}-\mathrm{C}$ chain can be linear, and it therefore seemed possible, notwithstanding reports of a finite dipole moment by Bergmann and Scheutz, ${ }^{6}$ that failure to resolve carbodi-imides might be due to the linearity of the $\mathrm{C}-\mathrm{N}=\mathrm{C}=\mathrm{N}-\mathrm{C}$ chain. However, the $X$-ray examination of a carbodi-imide described below shows that the chain is bent.

## Experimental

The carbodi-imides examined were all of the type (I). Samples of di-p-tolylcarbodi-imide ( $\mathrm{I} ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}$ ) and bis- $p$-dimethylaminophenylcarbodi-imide (IV) were kindly supplied by Sir Alexander Todd. Further quantities of the latter were made by condensation of $p$-dimethylaminoaniline (II) with carbon disulphide in benzene to give the thiourea (III), followed by removal of hydrogen sulphide with yellow mercuric oxide.?

(V)
(IV)
(All substituents para)
The carbodi-imide (IV) gave the same $X$-ray diagram and had the same melting point as that supplied by Professor Todd. The monomethiodide (V) was prepared by the action of methyl iodide on the base (IV) in benzene ${ }^{8}$ and was recrystallised from acetone. The melting point was $165^{\circ}$, as given by Zetzsche and Baum. ${ }^{8}$

The cell dimensions and space-groups of the three carbodi-imides examined are:

| R (in I) | $\mathrm{R}^{\prime}$ (in I) | $a(\AA)$ | $b(\AA)$ | $c(\AA)$ | Space-group | $z$ | $d_{\text {obs. }}$ (g./c.c.) | $d_{\text {calc. }}$ (g./c.c.) |
| :--- | :--- | ---: | ---: | ---: | :---: | :---: | :---: | :---: |
| Me | Me | $11 \cdot 30$ | $14 \cdot 78$ | $7 \cdot 70$ | $P 2_{1} 2_{1} 2_{1}$ | 4 | - | -16 |
| $\mathrm{NMe}_{2}$ | $\mathrm{NMe}_{2}$ | $7 \cdot 46$ | $33 \cdot 32$ | $6 \cdot 29$ | $P 2_{1} 2_{1} 2_{1}$ | 4 | $1 \cdot 16$ | $1 \cdot 19$ |
| $\mathrm{NMe}_{2}$ | $\left(\mathrm{NMe}_{3}\right)^{+\mathrm{I}}-40 \cdot 50$ | $5 \cdot 67$ | $8 \cdot 24$ | $P c a 2_{1}$ | 4 | $1 \cdot 46$ | $1 \cdot 48$ |  |

[^0]Attempts to find the structure of bis- $p$-dimethylaminophenylcarbodi-imide were unsuccessful and a heavy atom was introduced into this molecule in an attempt to simplify the analysis.

Multiple-film Weissenberg photographs of the $h k 0$ and $h 0 l$ reflexions from the monomethiodide (V) crystals were taken with $\mathrm{Cu}-K_{\alpha}$ radiation. The intensities were estimated visually by means of a calibration strip. The systematic absences ( 0 kl ) with $l$ odd and ( $h 0 l$ ) with $h$ odd give the possible space-groups $P_{c a 2_{1}}$ or Pcam. If Pcam were correct the molecules would lie on special positions, and, since the monomethiodide cannot possess a centre of symmetry or a twofold axis, the only possibility is that it has a mirror plane. The unit-cell dimensions suggest that this is unlikely. The space-group was confirmed to be No. $29 P c a 2_{1}$ $\left(C^{5}{ }_{2 \mathrm{~V}}\right)$ by plots of the intensity distribution of the ( $h 0 l$ ) and ( $h k 0$ ) projections. ${ }^{9} \quad(h k 0)$ was found to have a centric and ( $h 0 l$ ) a non-centric distribution. The calculated linear absorption coefficient is $145 \mathrm{~cm} .^{-1}$. Since the maximum path length of the $X$-rays through the plate-like crystal in the two projections was $1.75 \times 10^{-3} \mathrm{~cm}$., absorption errors did not exceed $20 \%$ of the observed intensities and were ignored.

The intensities were put on an approximately absolute scale by means of a Wilson plot ${ }^{10}$ which gave a value of $B=3.8 \AA$. This value of the temperature factor was retained throughout the analysis.

Electron density $\rho(x y 0)$ contours at arbitrary intervals. Zero contour is at $3 \cdot 5$ e per $\AA^{2}$. The contours for the iodine atom are at ten times the interval of those of the other atoms.


The X-Ray Analysis.-Initial values of the parameters of the iodine atom ( $x / a=0.047$ $y / b=0 \cdot 119, z / c=0 \cdot 250$ ) were found from the Patterson functions $\mathrm{P}(X Y 0)$ and $\mathrm{P}(X 0 Z)$. Structure factors were then calculated for the iodine atom alone and were found to give a preliminary $R$ value of 0.25 and 0.26 for ( $h k 0$ ) and ( $h 0 l$ ) respectively. $R$, the so-called " agreement index," is the residual

$$
\sum\left|\left|F_{o}\right|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|
$$

The signs given by the iodine atom were then used to calculate a Fourier synthesis for the centrosymmetric ( $h k 0$ ) projection, all but one of the 75 observed planes being included. As a model with a linear central $\mathrm{C}-\mathrm{N}=\mathrm{C}=\mathrm{N}-\mathrm{C}$ chain could not be fitted to this Fourier map, atomic positions based on a molecule with the classical configuration

were used to calculate another set of structure factors. The residual immediately fell to $0 \cdot 19$. The Figure shows the second Fourier map which is based on all 75 structure factors. The positions of the atoms assumed at this stage are shown by crosses.
${ }^{9}$ Howells, Phillips, and Rogers, Acta Cryst., 1950, 3, 210.
${ }^{10}$ Wilson, Nature, 1942, 150, 152.

All the signs of the structure factors were now known and Fourier difference maps were used for further refinement. The first of these indicated that a methyl group assumed to be at $P$ was in the wrong position and should be moved to $Q(C 3)$, thus transferring the quarternary nitrogen atom to the other end of the molecule, closer to the iodide ion. After a few more cycles it became evident that four reflexions ( $800 ; 10,00 ; 12,00$; and 510 ) were affected by extinction. These four reflexions have similar values of $\sin \theta$ (about $0 \cdot 17$ ) and there are no

Table 1. Final x and y parameters.

|  | $x / a$ | $y / b$ |  | $x / a$ | $y / b$ |  | $x / a$ | $y / b$ |  | $x / a$ | $y / b$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | 0.0465 | $0 \cdot 116$ | C6 | $0 \cdot 106$ | $0 \cdot 462$ | C12 | $0 \cdot 256$ | 0.539 | C18 | $0 \cdot 374$ | $0 \cdot 630$ |
| Cl | 0.024 | $0 \cdot 326$ | C7 | $0 \cdot 121$ | $0 \cdot 103$ | Cl 3 | $0 \cdot 285$ | $0 \cdot 233$ | N1 | $0 \cdot 048$ | 0.500 |
| C2 | 0.044 | 0.660 | C8 | $0 \cdot 137$ | $0 \cdot 354$ | C14 | $0 \cdot 283$ | $0 \cdot 650$ | N2 | $0 \cdot 174$ | $0 \cdot 072$ |
| C3 | 0.052 | $0 \cdot 600$ | C9 | $0 \cdot 144$ | $0 \cdot 187$ | $\mathrm{Cl5}$ | $0 \cdot 314$ | $0 \cdot 340$ | N3 | $0 \cdot 224$ | $0 \cdot 200$ |
| C4 | 0.083 | 0.387 | C10 | $0 \cdot 200$ | $0 \cdot 132$ | C16 | $0 \cdot 314$ | 0.553 | N4 | $0 \cdot 343$ | $0 \cdot 667$ |
| C5 | 0.088 | $0 \cdot 233$ | Cll | $0 \cdot 256$ | $0 \cdot 329$ | C17 | $0 \cdot 343$ | 0.852 |  |  |  |

Table 2. Observed and calculated structure factors. (Figures are absolute values.)

planes of lower $\sin \theta$ with such large intensities. These planes were omitted from subsequent refinement cycles, during which the $R$ factor fell to $0 \cdot 09$. The final atomic positions are shown by circles in the Figure. The symmetry-related molecule is shown by broken lines. Table 1 gives the final atomic parameters and Table 2 the observed and calculated structure factors. Since the projection shows that the molecule is bent it was decided not to proceed further with the analysis.

## Discussion

The following conclusions about the geometry of the molecule can be drawn from the Figure:
(i) The two bonds to N2 are not collinear.
(ii) Those to N3 are approximately collinear in projection, but the shortness of the projected length of $\mathrm{N} 2=\mathrm{C} 10=\mathrm{N} 3$ (approximately $2 \cdot 1 \AA$ ) shows that these two bonds are
considerably inclined to the plane of projection. On the other hand, the approximate regularity of the benzene ring B 2 and the normal lengths of the $\mathrm{N} 3-\mathrm{Cll}$ and $\mathrm{N} 4-\mathrm{C} 16$ bonds ( $1 \cdot 4 \AA$ ) show that these are all approximately parallel to the plane of projection. Thus the $\mathrm{C} 10^{-} \mathrm{N} 3-\mathrm{Cll}$ system cannot be linear and moreover it does not lie in the plane of the $\mathrm{C} 9-\mathrm{N} 2-\mathrm{Cl} 0$ system.
(iii) The plane of the benzene ring B 2 is nearly perpendicular to the plane of $\mathrm{C} 10^{-} \mathrm{N} 3-\mathrm{C} 11$. The angle between Bl and $\mathrm{C} 9-\mathrm{N} 2-\mathrm{Cl} 0$ cannot be estimated very accurately but it is easy to see that it is large.

These results show that the molecule has the asymmetric form predicted by classical stereochemistry. Equal numbers of right- and left-handed forms of the molecule occur in the crystal.

The non-coplanarity of the $-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{N}=\mathrm{C}=$ systems resembles that which occurs in cisazobenzene ${ }^{11}$ and suggests that there is no conjugation between the central double-bond system and the benzene rings. A carbodi-imide therefore cannot help to discriminate between the two possible effects (electronegativity and hyperconjugation) which, according to Bullough and Wheatley, ${ }^{5}$ might account for the linearity of vinylideneamines.

We thank Professor E. G. Cox, who suggested this investigation, for many helpful discussions, and for putting at our disposal research facilities provided by the Royal Society and Imperial Chemical Industries Limited. We are indebted to Sir Alexander Todd for some of the material used in the investigation.

[^1]
[^0]:    ${ }^{1}$ Khorana, Chem. Rev., 1953, 2, 145.
    ${ }^{2}$ Sidgwick, "The Organic Chemistry of Nitrogen," New edn., revised by Taylor and Baker, Oxford Univ. Press, 1942.
    ${ }^{3}$ Rolls and Adams, J. Amer. Chem. Soc., 1932, 54, 2494.
    ${ }_{5}$ Wheatley, Acta Cryst., 1954, 7, 68.
    ${ }^{5}$ Bullough and Wheatley, ibid., 1957, 10, 233.
    ${ }^{6}$ Bergmann and Scheutz, Z. phys. Chem., 1932, B, 19, 389.
    ${ }^{7}$ Zetzsche and Nerger, Ber., 1940, 73, 467.
    ${ }^{8}$ Zetzsche and Baum, Ber., 1942, 75, 100.

[^1]:    The University, Leeds, 2.
    [Present address (P. J. W.): Monsanto Research S.A., Binzstrasse 39, Zürich 3/45, Switzerland.]
    ${ }^{11}$ Hampson and Robertson, J., 1941, 409.

